
JSS Journal of Statistical Software
October 2023, Volume 107, Issue 9. doi: 10.18637/jss.v107.i09

Efficient Multiple Imputation for Diverse Data in
Python and R: MIDASpy and rMIDAS

Ranjit Lall
University of Oxford

Thomas Robinson
London School of Economics

and Political Science

Abstract

This paper introduces software packages for efficiently imputing missing data using
deep learning methods in Python (MIDASpy) and R (rMIDAS). The packages implement
a recently developed approach to multiple imputation known as MIDAS, which involves
introducing additional missing values into the dataset, attempting to reconstruct these
values with a type of unsupervised neural network known as a denoising autoencoder, and
using the resulting model to draw imputations of originally missing data. These steps are
executed by a fast and flexible algorithm that expands both the quantity and the range of
data that can be analyzed with multiple imputation. To help users optimize the algorithm
for their particular application, MIDASpy and rMIDAS offer a host of user-friendly tools
for calibrating and validating the imputation model. We provide a detailed guide to these
functionalities and demonstrate their usage on a large real dataset.

Keywords: missing data, multiple imputation, machine learning, Python, R.

1. Introduction

Approaches to analyzing data with missing values, one of the most common methodological
challenges facing empirical researchers, have become increasingly sophisticated in recent years.
Conscious of the biases and inefficiencies of traditional ad-hoc methods, such as deleting or
guessing missing data, analysts across a wide range of disciplines have been turning to the
general-purpose framework of multiple imputation. Recommended by a well-developed body
of statistical theory (e.g., Rubin 1987, 1996; Little and Rubin 2002), multiple imputation
involves replacing each missing element with several values that preserve relationships within
the observed data while representing uncertainty about the correct imputation model.
This paper introduces a pair of software packages that deliver a high-performance implemen-
tation of multiple imputation in Python (MIDASpy, Lall, Stenlake, and Robinson 2023) and R

https://doi.org/10.18637/jss.v107.i09
https://orcid.org/0000-0003-1455-3506
https://orcid.org/0000-0001-7097-1599


2 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

(rMIDAS, Robinson, Lall, and Stenlake 2023).1 The packages leverage a type of unsupervised
neural network known as a denoising autoencoder, which is designed to efficiently learn latent
representations of data for the purpose of dimensionality reduction (or feature selection and
extraction in machine learning terminology, Vincent, Larochelle, Bengio, and Manzagol 2008;
Vincent, Larochelle, Lajoie, Bengio, and Manzagol 2010). Denoising autoencoders corrupt
a subset of observed values via the injection of stochastic noise and attempt to reconstruct
them through a series of nested nonlinear transformations. The packages repurpose denoising
autoencoders for multiple imputation by treating missing values as an additional portion of
corrupted data and drawing imputations from a model trained to minimize the reconstruc-
tion error on the originally observed portion. They thus employ an effectively nonparametric
imputation model that imposes constraints only on the distribution of functions that are
consistent with the data, giving it the flexibility to capture relationships of widely varying
complexity. This method, which was proposed recently by Lall and Robinson (2022), is known
as MIDAS (multiple imputation with denoising autoencoders), from which the packages derive
their names.
MIDASpy and rMIDAS offer a suite of easy-to-use computational tools for implementing
MIDAS – to our knowledge, the first full-featured, open-source software for performing mul-
tiple imputation with neural network technology. The software’s principal advantages are its
accuracy, efficiency, end-to-end capabilities, and availability in two major programming lan-
guages. As summarized in Table 1, multiple imputation software has traditionally been based
on parametric imputation methods, employed expectation-maximization (EM) or Markov
chain Monte Carlo (MCMC) algorithms, and been limited to R. Popular examples include
norm (Schafer and Olsen 1998), mice (Van Buuren and Groothuis-Oudshoorn 2011), mi (Su,
Gelman, Hill, and Yajima 2011), and Amelia (Honaker, King, and Blackwell 2011). Although
suitable for many applications, EM and MCMC imputation algorithms can suffer from con-
vergence problems and suboptimal imputation accuracy when applied to large datasets with
complex features, such as high dimensionality, severe nonlinearities, and unconventional func-
tional forms – features that are becoming common in the emerging era of “big data” (Honaker
and King 2010; Lall and Robinson 2022).
In recent years, software based on more flexible nonparametric imputation methods, most
notably random forests, has become available in Python (Van Rossum et al. 2011) as well as
R (R Core Team 2023), providing accuracy gains in complex applications. Among the most
widely used are MissForest (Stekhoven and Bühlmann 2012), miceRanger (Wilson 2021),
miceforest (Wilson 2022), and sklearn.impute, scikit-learn’s imputation library (Pedregosa
et al. 2011).2 However, these packages can also exhibit lengthy runtimes with large (in
particular wide) datasets because, similarly to MCMC-based approaches, they iteratively
impute missing values in one incomplete variable at a time. In addition, they rarely cover
all stages of the typical multiple imputation workflow.3 For instance, they typically lack
functionalities for combining the results of statistical models estimated post-imputation.
This paper provides an overview and demonstration of MIDASpy and rMIDAS’s key func-

1The software was developed by the authors and Alex Stenlake. For more information, see https://github.
com/MIDASverse. As discussed below, each package is registered in its programming language’s official software
repository.

2miceRanger and miceforest implement the same method in R and Python, respectively. sklearn.impute is
designed primarily for single imputation; multiple imputation is implemented by enabling the experimental
IterativeImputer class and setting sample_posterior = True.

3A detailed comparison of the stages covered by the packages listed in Table 1 is provided in Section 4.3.

https://github.com/MIDASverse
https://github.com/MIDASverse


Journal of Statistical Software 3

Software package Imputation model Algorithm R Python

Amelia Multivariate normal EM ✓
mi Conditional MCMC (chained equations) ✓
mice Conditional MCMC (chained equations) ✓
norm Multivariate normal MCMC (imputation-posterior) ✓
MissForest Nonparametric Iterative random forests ✓
miceRanger/miceforest Nonparametric Iterative random forests ✓ ✓
sklearn.impute Variable MCMC (chained equations) ✓
MIDASpy/rMIDAS Nonparametric Autoencoder neural network ✓ ✓

Table 1: Comparison of MIDASpy/rMIDAS with popular multiple imputation software in R
and Python.

tionalities: instantiating, building, and training the imputation model; calibrating model
hyperparameters and validating outputs; and storing, exporting, and analyzing completed
datasets.4 Details on the statistical theory underlying MIDAS, as well as systematic evidence
of MIDASpy and rMIDAS’s accuracy and efficiency across diverse data types relative to ex-
isting multiple imputation software – including several of the packages listed in Table 1 – are
presented in Lall and Robinson (2022).
The core code base for both packages is written in Python using the efficient and flexible
architecture of the TensorFlow library (Abadi et al. 2016), whose capacity to operate at scale
and in heterogeneous environments enables the software to expand both the quantity and
the range of data that can be analyzed with multiple imputation. TensorFlow supports high
degrees of parallelization as well as graphics processing unit (GPU) computation, making it
possible for users to further accelerate the imputation process.
rMIDAS wraps the key functionalities of MIDASpy into a package tailored specifically for R
users. rMIDAS directly interfaces with MIDASpy without disrupting users’ existing work-
flows or compromising the speed and scalability of the MIDAS algorithm. To the contrary,
the package takes advantage of R specific tools for efficiently processing and structuring data
to further accelerate computation.
In the next section, we provide an overview of the MIDAS approach and the algorithm
we have developed for implementing it. Section 3 describes how to install MIDASpy in
Python and its main functions and arguments. Section 4 presents an analogous description
of rMIDAS, including the features it inherits from MIDASpy as well as the unique tools it
offers for enhancing the efficiency of the imputation process. Section 5 presents an applied
demonstration of the software, using MIDASpy and rMIDAS to impute missing values in a
large-scale electoral dataset. Section 6 discusses three of the software’s diagnostic tools for
model calibration and validation, illustrating them on the same dataset.5 Section 7 concludes
and outlines future plans for the software’s development.

4Hyperparameters are features of neural networks that are manually specified by the analyst rather than
learned during training.

5To comply with the Journal of Statistical Software’s requirement to provide a single replication script, we
generate all figures using rMIDAS and R, providing the code for producing equivalent results with MIDASpy
in the text. Our script runs successfully on Mac and Ubuntu operating systems as well as the popular rocker
RStudio docker container with the OpenBLAS and Accelerate linear algebra libraries. However, it may fail to
execute using the ATLAS library due to a conflict between numpy and system versions of BLAS, which users
would need to check and address manually.



4 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

2. The MIDAS approach
Multiple imputation always involves (1) filling in missing values with M independently drawn
imputations that preserve relationships within the observed data, (2) estimating parameters
of interest with the M completed datasets, and (3) combining the M separate parameter
estimates using a set of simple rules (described in Section 3.3) that exploit variation across
the datasets to capture uncertainty about the correct imputation model. Approaches to
performing the first step, however, vary widely in their assumptions about the structure and
distribution of the data (Lall 2016). Traditionally, the most popular approaches have been
modeling the data as a sample from a multivariate normal distribution (e.g., Amelia, norm)
and estimating each variable’s distribution conditionally on all others (e.g., mi, mice).
This section describes the neural network-based approach to multiple imputation that under-
lies MIDASpy and rMIDAS, before outlining the computational procedure we have developed
to implement this approach. Our exposition follows the standard linear algebraic notation
used in the neural network literature: italicized upper-case symbols denote random vectors
(e.g., X); bold lower-case symbols (x) denote ordinary column vectors, i.e., realizations of
random vectors; bold upper-case symbols (e.g., W) denote matrices; and superscripts in
parentheses index hidden layers of a neural network. We define D = {Dobs, Dmis} as an input
dataset (including all variables to feature in subsequent analyses) in which Dobs is observed
and Dmis is missing.

2.1. Adapting neural networks for multiple imputation

The MIDAS approach makes use of denoising autoencoders, a type of unsupervised neural
network developed to learn informative lower-dimensional representations of data. Denois-
ing autoencoders are an extension of traditional autoencoders, which are composed of two
sequential parts. First, an encoder deterministically maps an input vector x to a lower-
dimensional representation y by passing it through a series of shrinking hidden layers ending
with a “bottleneck” layer (indexed by B):

y = fθ(x) = σ(W(B)[. . . [σ(W(2)[σ(W(1)x + b(1))] + b(2))] . . .] + b(B))

where W is a matrix of weights connecting the nodes between hidden layers, b is a vector of
biases for each layer, and σ is a nonlinear activation function. Second, a decoder maps y back
to a reconstruction z with the same probability distribution and dimensions as x by passing
it through a parallel series of expanding hidden layers finishing with the output layer:

z = gθ′(y) = Φ(W′(H)[. . . [σ(W′(B+2)[σ(W′(B+1)y + b′(B+1))] + b′(B+2))] . . .] + b′(H)) (1)

where Φ is a final activation function that converts outputs to their appropriate distribution.6
Weights are adjusted by the method of backpropagation (Rumelhart, Hinton, and Williams
1986a,b) to minimize a loss function L(x, z) measuring the distance between x and z, that is,
the average reconstruction error. z can thus be interpreted as the parameters of a distribution
that generates x with a high probability.
Traditional autoencoders with multiple hidden layers run the risk of simply learning the
identity function and hence becoming redundant. Denoising autoencoders seek to avoid this

6The prime symbols in Equation 1 distinguish decoder parameters from encoder parameters.



Journal of Statistical Software 5

possibility – while enabling the extraction of even more robust features – by partially cor-
rupting inputs via the injection of stochastic noise: x → x̃ ∼ qD(x | x̃). As in a traditional
autoencoder, the corrupted input is then mapped to a hidden representation y = fθ(x̃), from
which a “repaired” version z = gθ′(y) is constructed. Unlike before, however, z is now a
deterministic function of x̃ rather than of x. Since the corruption process typically involves
forcing a random subset of inputs to 0, denoising autoencoders effectively perform a form
of imputation: predicting corrupted (missing) elements based on relationships among uncor-
rupted (observed) elements.7 In other words, missing values can be seen as a special case of
corrupted or noisy input data.
Building on this insight, MIDAS adapts denoising autoencoders for the task of multiple im-
putation through two key modifications. First, it sets all missing values to 0 and trains the
network to predict corrupted elements that were both originally missing (x̃mis) and originally
observed (x̃obs) using a loss function that only measures the reconstruction error on the lat-
ter. Second, as a further bulwark against overfitting, MIDAS regularizes the encoder with
the complementary technique of dropout, which extends the corruption process to its hidden
layers (Hinton, Srivastava, Krizhevsky, Sutskever, and Salakhutdinov 2012; Srivastava, Hin-
ton, Krizhevsky, Sutskever, and Salakhutdinov 2014). This is implemented by multiplying
outputs from these layers by a Bernoulli vector v that takes a value of 1 with probability
p: ỹ(h) = v(h)y(h), v(h) ∼ Bernoulli(p). At test time, multiple imputations are generated by
sampling M “thinned” networks.
This procedure, Gal and Ghahramani (2016) show, is equivalent to Bayesian variational ap-
proximation of a Gaussian process, a well-known distribution over possible functions.8 Rather
than assuming a joint distribution of the data, therefore, MIDAS only places a prior on the
distribution of functions that can characterize the data. As there is no limit to the potential
number of parameters in a Gaussian process model, MIDAS employs an effectively nonpara-
metric imputation model that (with appropriate specification) can estimate any continuous
function arbitrary well.
The encoding portion of a MIDAS network can thus be described as:

ỹ = fθ(x̃) = σ(W(B)v(B)[. . . [σ(W(2)v(2)[σ(W(1)x̃ + b(1))] + b(2))] . . .] + b(B)).

The decoder takes the form:

z = gθ′(ỹ) = Φ(W(H)′[. . . [σ(W(B+2)′[σ(W(B+1)′ỹ + b(B+1)′)] + b(B+2)′)] . . .] + b(H)′)

where z now represents a fully observed vector containing predictions of x̃obs and x̃mis. To pro-
duce a completed dataset, predictions of x̃mis are substituted for xmis in the input dataset D.
By default, MIDAS employs exponential linear unit (ELU) activation functions, which are
known to facilitate fast and accurate training in deep neural networks:

σ(α, m(h)) =
{

α(em(h) − 1) for m(h) ≤ 0
m(h) for m(h) > 0

7The choice of 0 for corrupted data points is not substantively important (any value would work); it is a
popular choice mainly because it is often close to the “true” value being estimated, minimizing the adjustment
to network parameters in training and hence accelerating model convergence.

8GPs are a generalization of multivariate normal distributions over finite dimensional vectors to infinite
dimensionality. Specifically, a finite vector x is a GP if the vector of function values f = f(x1), f(x2), . . . , f(xn)
follows a multivariate normal distribution.



6 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

where m(h) represents the output from layer h−1 and α denotes a positive constant initialized
as 1. The final activation function is chosen according to the distribution of the input data.
Following standard practice, MIDAS assigns identity, logistic, and softmax (i.e., normalized
exponential) functions to continuous, binary, and categorical variables, respectively:

Φ(m(H)
j ) =



m(H)j if x is continuous
1

1+e
−m(H)

j

if x is binary

e
m(H)

j∑K

k=1 e
m(H)

k

if x is categorical

where j indexes realized components of m(H).
As in a regular denoising autoencoder, the loss function penalizes greater distances between
x and z: L(x, z). Since we are only interested in the reconstruction error on predictions
of originally observed values, however, it is multiplied by a missingness indicator vector r,
i.e., a vector the same length as x whose elements are a 1 if the corresponding entry in x is
missing and a 0 if it is observed. Specifically, we assign root mean squared error (RMSE) and
cross-entropy loss functions for continuous and binary or categorical variables, respectively:9

L(x, z, r) =
{

[ 1
J

∑J
j=1 rj(xj − zj)2] 1

2 if x is continuous
− 1

J

∑J
j=1 rj [xj log zj + (1 − xj) log(1 − zj)] if x is binary/categorical.

(2)

2.2. Algorithm

The algorithm underlying MIDASpy and rMIDAS takes an incomplete input dataset D and
uses it to initialize, build, and train an imputation model based on the MIDAS approach, from
which it draws imputations to generate M completed versions of this dataset. The algorithm,
which is summarized in pseudocode form in Algorithm 1, has three principal stages: data
preparation, model training, and imputation.
In the first stage, D is formatted for training. A missingness indicator matrix R (i.e., a matrix
equivalent of r) is constructed for D, enabling the algorithm to later distinguish between xmis
and xobs. All elements of Dmis are set to 0. A MIDAS network is then initialized according to
the dimensions of D. To prevent backpropagated gradients from vanishing or exploding, the
network is parameterized using a variant of Xavier initialization (Glorot and Bengio 2010),
which draws weights from a truncated normal distribution:

W(h) ∼ N
(

0,
1√

n(h) + n(h+1)

)

where n(h) is the size of layer h − 1 (i.e., the number of columns of W(h)).
In the training stage, five steps are repeated (see Figure 1 for a visual schematic):

9While mean squared error (MSE) is more commonly used for continuous variables, we have found RMSE to
yield more stable and robust training. A small constant is added to the cross-entropy loss function to prevent
log(0) values.



Journal of Statistical Software 7

Algorithm 1: MIDAS algorithm pseudocode.
Data : Incomplete dataset D
Result : M completed datasets
Parameters : Network weights W
Hyperparameters: Network structure, number of training epochs t, corruption

proportion p, mini-batch size s, learning rate γ, weight decay rate λ
1 begin
2 Generate missingness indicator matrix R;
3 Set missing values in D to 0: D → D[R = 0] = 0;
4 Initialize DA based on dimensions of D (with Xavier initialization);
5 while epoch < t do
6 Shuffle D and R in same order;
7 Slice D row-wise into n mini-batches B1, B2, . . . , Bn of size s;
8 Partially corrupt inputs: x̃ = [v(0,1)B1, . . . , v(0,n)Bn], where

v(0) ∼ Bernoulli(p = 0.8);
9 Partially corrupt outputs of hidden nodes (dropout): ỹ(h) = y(h)v(h), where

v(h) ∼ Bernoulli(p = 0.5);
10 Perform forward pass through entire network;
11 Calculate reconstruction error against x̃obs: E = L(x, z, r) + λ||E[W]||2, where r

is missingness indicator vector;
12 Backpropagate loss through network to find error gradients: ∂E

∂W(h) ;
13 Update weights for next epoch: ∆W(h) = −γ ∂E

∂W(h) ;
14 end
15 repeat
16 Pass D into trained DA;
17 Construct completed dataset using predictions of x̃mis;
18 until M completed datasets generated;
19 end

1. D and R are shuffled and divided row-wise into paired mini-batches B1, B2, . . . , Bn.
This step reduces training time – storing all training data in memory and calculating
loss for the whole sample are memory-intensive – and increases the frequency of model
updates, ensuring more robust convergence.

2. Mini-batch inputs are partially corrupted via multiplication by a vector v(0) ∼ Bernoulli(p =
0.8) (resulting in a corruption rate of 20%).

3. To implement dropout, outputs from half of the nodes in hidden layers of the network
are multiplied by another vector v(h) ∼ Bernoulli(p = 0.5).

4. Data are stochastically passed forward through the “thinned” network to produce the
input reconstruction z, and error is calculated using the loss functions defined in Equa-
tion 2.10

10As an additional check against overfitting, we include in these functions a weight decay regularization term
λ that penalizes the squared sum of weights.



8 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Loss
(originally observed

values only)

Backpropagation

Forward pass

Incomplete input dataset

Shuffle and divide into mini-batches

Introduce additional missingness

M completed datasets drawn from model

Figure 1: Schematic of the MIDAS training process.

5. Loss values are aggregated into a single term and backpropagated through the network,
with the resulting error gradients used to adjust weights for the next epoch. The size of
this adjustment is controlled by a learning rate hyperparameter γ, by which loss function
derivatives are multiplied. Mini-batch stochastic gradient descent is implemented with
the widely used Adam algorithm (Kingma and Ba 2015).

Finally, a stochastic forward pass is conducted through the whole of D, and corrupted values
are reconstructed according to the data manifold learned during training. A completed dataset
is formed by replacing Dmis with predictions of the corresponding elements from the MIDAS
network’s output. This last stage is repeated M times.



Journal of Statistical Software 9

2.3. Memory management

Analyzing large incomplete datasets almost inevitably involves memory-intensive computa-
tion, which can result in slower task execution and more frequent crashes. The MIDAS
algorithm cannot, of course, eliminate the need for sufficient memory to handle such datasets
in the first place, and users may run up against the limits of available processing power in
sizable applications.
Even so, the algorithm can meaningfully reduce random-access memory (RAM) usage and
hence the likelihood of computational problems. The nodes and layers of a MIDAS network
are fixed and require relatively little memory to perform their functions. For example, prior
to imputation (but after one-hot encoding), the electoral dataset that we analyze in Section 5
uses 925MB of RAM. The MIDAS model we train on the data, in contrast, consumes approxi-
mately 30MB of RAM. Importantly, since the algorithm scales linearly, users can easily – and
affordably – “offshore” model training to a virtual server with greater memory capacity.11

Furthermore, our software for implementing the algorithm is designed to be as efficient as
possible and includes tools for further minimizing memory intensity. For instance, MIDASpy
offers a function for accessing completed datasets individually rather than concurrently (de-
tailed in Section 3.2 and demonstrated in Section 5.1), while rMIDAS leverages a variety
of fast data-formatting and data-shaping capabilities now available in R (described in Sec-
tion 4.2). As mentioned earlier, the software’s speed and scalability have been shown to
compare favorably with popular alternatives (Lall and Robinson 2022).

3. Python interface: The MIDASpy package

3.1. Installing MIDASpy
MIDASpy is available on the Python Package Index (PyPI, https://pypi.org/project/
MIDASpy) and can thus be installed via the command line (in Python 3.5 or higher).

>>> pip install MIDASpy

MIDASpy requires the following Python libraries:

• matplotlib (Hunter 2007),

• NumPy (≥ 1.5, Oliphant 2006),

• pandas (≥ 0.19, McKinney 2010),

• TensorFlow (≥ 1.10, ≥ 2.2, Abadi et al. 2016).12

3.2. Main functions and arguments

The typical workflow for users of MIDASpy is the following:
11For example, this paper’s final results were generated using Amazon Web Services (AWS) servers. Guidance

on setting up a server instance is provided on MIDASpy’s webpage and as a vignette in rMIDAS.
12When using version 2.2 and above of TensorFlow, MIDASpy also requires TensorFlow Addons (≥ 0.11).

https://pypi.org/project/MIDASpy
https://pypi.org/project/MIDASpy


10 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

1. Preprocess the input dataset.

2. Initialize the neural network.

3. Build the imputation model.

4. Train the imputation model.

5. Generate the completed datasets.

In the rest of this section, we describe the functions and associated arguments required in
each stage. Unless otherwise specified, these functions must be called in the order they appear
below; failure to do so will raise an error. For the sake of brevity, we exclude nonessential
functions, documentation on which can be found on the software’s homepage. We postpone
the discussion of diagnostic tools, which are optional but strongly recommended, to Section 6.

Preprocess the input dataset

To ensure that their incomplete input dataset is in the appropriate format for MIDASpy,
users must begin by undertaking two preprocessing steps. First, binary variables must be
converted to dummy (i.e., 0/1) form without altering their missingness pattern. For pandas
DataFrames, this can be done using MIDASpy’s .binary_conv() function, which is applied
on a variable-by-variable basis (generating a variable of equal length containing 1s and 0s).

• x: pd.Series array. An indexable array containing only two unique values.

Second, categorical variables must be one-hot encoded (i.e., divided into separate dummy
variables for each unique class) while again preserving their missingness pattern. One-hot
encoding functions are available in several Python libraries, including pandas, scikit-learn,
and Dask (Dask Development Team 2016). As these functions typically re-code missing
values as 0, we have included in MIDASpy the .cat_conv() function, which wraps pandas’s
get_dummies() function but copies the location of such values and reinstates them after one-
hot encoding. In addition, .cat_conv() stores the names of the one-hot encoded variables,
generating a list of lists that can be subsequently passed to the MIDASpy imputation model.

• cat_data: pd.DataFrame. A data frame containing only the categorical columns to be
one-hot encoded.

Finally, we also recommend rescaling continuous variables between 0 and 1, which tends to
improve the MIDAS algorithm’s convergence. This can be done using, for instance, scikit-
learn’s MinMaxScaler() function.

Initialize the neural network

The MIDAS network is initialized with the Midas() function. The separation between the
initialization and model-building stages of the imputation process allows for the usage of
out-of-memory datasets, a useful feature for Big Data applications that stretch in-memory
capacity. The main network hyperparameters are specified in this function.



Journal of Statistical Software 11

• layer_structure: List of integers. The number of nodes in each layer of the network
(default = [256, 256, 256], denoting a three-layer network with 256 nodes per layer).
Larger networks can learn more complex data structures but require longer training and
are more prone to overfitting. We discuss this tradeoff in greater detail in Section 6.2.

• learn_rate: Float. The learning rate γ (default = 0.0001), which controls the size of
the adjustment to weights and biases in each training epoch. In general, higher values
reduce training time at the expense of less accurate results (see Section 6.2

• input_drop: Float between 0 and 1. The probability of corruption for input columns in
training mini-batches (default = 0.8). Higher values increase training time but reduce
the risk of overfitting. In our experience, values between 0.7 and 0.95 deliver the best
balance between speed and accuracy.

• train_batch: Integer. The number of observations in training mini-batches (default =
16). Common choices are 8, 16, 32, 64, and 128; powers of 2 tend to enhance memory
efficiency. In general, smaller batches lead to faster convergence at the cost of greater
noise and thus less accurate estimates of the error gradient. Where memory management
is a concern, they should be favored.

• savepath: String. The location to which the trained model will be saved.

• seed: Integer. The value to which Python’s pseudo-random number generator is initial-
ized. This enables users to reproduce data shuffling, weight and bias initialization, and
missingness indicator vectors. As discussed in Section 3.4, however, it is not possible to
perfectly replicate completed datasets.

• loss_scale: Float. A constant by which the RMSE loss functions are multiplied (de-
fault = 1). This hyperparameter performs a similar function to the learning rate. If
loss during training is very large, increasing its value can help to prevent overtraining.

• init_scale: Float. The numerator of the variance component of Equation 19 (default
= 1). In very deep networks, higher values may help to prevent extreme gradients
(though this problem is less common with ELU activation functions).

• softmax_adj: Float. A constant by which the cross-entropy loss functions are multiplied
(default = 1). This hyperparameter is the equivalent of loss_scale for categorical
variables.

• vae_layer: Boolean. Specifies whether to include a variational autoencoder layer in the
network (default = False), one of the key diagnostic tools in MIDASpy. If set to true,
variational autoencoder hyperparameters must be specified via a number of additional
arguments. This functionality is discussed in detail in Section 6.3.

Build the imputation model

The function .build_model() constructs the imputation model. The main arguments declare
the incomplete input dataset and the list of binary and categorical variables (to ensure correct
assignment of loss functions).



12 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

• imputation_target: DataFrame. The input dataset. Upon being read in, the dataset
will be appropriately formatted and stored for training.

• binary_columns: List of names. A list of all binary variables.

• softmax_columns: List of lists. The outer list should include all (non-binary) categor-
ical variables; each inner list should contain the set of mutually exclusive classes in a
given variable.

• unsorted: Boolean. Specifies whether the input dataset is unordered in terms of vari-
able type (default = True, denoting no ordering). If False, binary_columns and
softmax_columns should be a list of integers denoting shape attributes for each cate-
gory.

• additional_data: DataFrame. Data that should be included in the imputation model
but are not required for later analysis. Such data will not be formatted, rearranged, or
included in the loss functions, reducing training time.

• verbose: Boolean. Specifies whether to print messages to the terminal (default = True).

Train the imputation model

Once the imputation model has been constructed, network parameters are optimized with
the .train_model() function. This function automatically saves the model after training.

• training_epochs: Integer. The number of complete passes through the network during
training (default = 100).

• verbose: Boolean. Specifies whether to print messages to the terminal during training,
including loss values (default = True).

• verbosity_ival: Integer. The number of training epochs between messages (default
= 1).

• excessive: Boolean. Specifies whether to print loss for each mini-batch to the terminal
(default = False), which can help with troubleshooting.

Generate the completed datasets

Finally, the M completed datasets are generated with the .generate_samples() function.
These datasets are stored in .output_list, from which they can be accessed in any or-
der. If a model has been pre-trained, .generate_samples() can be called in the absence of
.build_model().

• m: Integer. The number of completed datasets to produce (default = 50).

• verbose: Boolean. Specifies whether to print messages to the terminal (default = True).



Journal of Statistical Software 13

When working with particularly large datasets (or limited RAM), users may not wish to
hold all M datasets in memory at the same time. MIDASpy allows users to access one
dataset at a time with the function .yield_samples(), which takes the same arguments as
.generate_samples(). Instead of a list of datasets, however, it returns a Python generator
from which each dataset can be called sequentially. We illustrate this feature in Section 5.1.

3.3. Analyze the completed datasets

As noted earlier, multiple imputation typically serves as a data-processing step for a subse-
quent statistical analysis using full-data methods. To obtain valid results, this analysis must
be run on the M completed datasets separately, with the M sets of estimates then aggregated
using Rubin’s combination rules (Rubin 1987). If β denotes a parameter of interest (say, a re-
gression coefficient), these rules state that the overall point estimate β̂ is equal to the average
estimate across the completed datasets:

β̂M = 1
M

M∑
m=1

β̂m

The variance of β̂ is a weighted sum of the estimated variance within (U) and between (B)
the M completed datasets:

VAR(β̂M ) = UM +
(

1 + 1
M

)
BM

where UM = 1
M

∑M
m=1 VAR(β̂m) and BM = 1

M−1
∑M

m=1(β̂m − β̂M )2.
Due to the relative paucity of multiple imputation software in Python, MIDASpy includes
a function for estimating generalized linear regression models and combining the results ac-
cording to the Rubin rules: combine(). This function is independent from the ‘Midas’ class,
allowing users to apply it to completed datasets generated by any software.13 combine()
wraps the statsmodels package’s sm.GLM() function (Seabold and Perktold 2010), accepting
its keyword arguments. As a result, combine() enables users to perform multiple imputa-
tion regression analysis using a variety of generalized linear model (GLM) families, including
Gaussian (i.e., ordinary least squares), binomial, and Poisson.

• df_list: List of pd.DataFrames. A list of the M completed datasets to be analyzed.

• y_var: String. The outcome variable.

• X_vars: List of strings. A list of predictor variables.

• dof_adjust: Boolean. Indicates whether to apply the Barnard and Rubin (1999)
degrees-of-freedom adjustment for small samples.

• incl_constant: Boolean. Indicates whether to include an intercept in the null model,
the default in GLM software packages.

13Conversely, completed datasets produced by MIDASpy can be written to a general-purpose file format
(such as CSV with the to_csv() function in pandas) and then analyzed in another programming language.



14 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

• **glm_args: Further arguments to be passed to statsmodels.GLM(), e.g., to specify
model family, offsets, and variance and frequency weights (see the statsmodels docu-
mentation for details). If None, a Gaussian model will be estimated.

3.4. Note on replicability

Due to randomness introduced by the TensorFlow parallelization process, training parameters
will vary minutely across runs of the same neural network in MIDASpy.14 As a result, perfect
replication of completed datasets produced by the software is not possible, even with seed
settings. Nevertheless, variation between runs tends to be so small that it is unlikely to make
a substantive difference to users. In seeded tests based on the data we analyze in Section 5,
for instance, we were able to replicate training loss values to several decimal places. Hence,
seed specification can still ensure essentially identical output from a given network. Note also
that the trained imputation model and completed datasets can be saved to disk, allowing
exact reproduction of analysis results.

4. R interface: The rMIDAS package
rMIDAS interoperates with MIDASpy via the reticulate package (Ushey, Allaire, and Tang
2023) while maintaining a simple and intuitive workflow for users.

4.1. Installation and setup

As rMIDAS is available on the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-Project.org/package=rMIDAS, it can be installed and loaded by calling its name in
R’s install.packages() and library() functions.

R> install.packages("rMIDAS")
R> library("rMIDAS")

rMIDAS requires the following R packages:

• data.table (Dowle and Srinivasan 2023),

• mltools (Gorman 2018),

• reticulate (Ushey et al. 2023).

Users must also ensure that they have Python 3 installed on their system. When rMIDAS is
first loaded, it will check whether the Python dependencies listed in Section 3.1 are present;
if not, it will prompt users to install them from the R console.
rMIDAS supports the usage of custom Python binary paths as well as conda and virtual
environments, which can be set using the following arguments in the set_python_env()
function.

14Tiny differences in processor speed cause the order in which loss values are passed to mathematical oper-
ators to be randomized outside the MIDASpy code base. This affects imputations because operators involving
floating-point numbers (i.e., non-integer real numbers) are non-commutative (Goldberg 1991).

https://CRAN.R-Project.org/package=rMIDAS
https://CRAN.R-Project.org/package=rMIDAS


Journal of Statistical Software 15

R> set_python_env(python = "path/to/python/binary")
R> set_python_env(python = "virtual_env", type = "virtualenv")
R> set_python_env(python = "conda_env", type = "condaenv", conda = "auto")

4.2. Main functions and arguments

rMIDAS has four main functions, which in turn (1) preprocess the input dataset, (2) build
and train the imputation model, (3) generate the M completed datasets, and (4) analyze these
datasets using multiple imputation. Since rMIDAS directly calls MIDASpy, the arguments
passed to these functions are identical to those of equivalent functions described in Section 3.2.
We thus do not present the full list of rMIDAS arguments here (which can be found in the
CRAN documentation), focusing instead on those that are unique to the package.

Preprocessing data

Leveraging efficient tools for manipulating data in the data.table (Dowle and Srinivasan 2023)
and mltools (Gorman 2018) packages, the function convert() consolidates and automates the
three data preprocessing steps discussed in Section 3.2.15 In addition, it stores the parameters
needed to reverse these steps post-imputation.

• data: data.frame, data.table, or a path to a regular, delimited file. The input
dataset.

• bin_cols: Vector of names. A vector of all binary variables.

• cat_cols: Vector of names. A vector of all categorical variables.

• minmax_scale: Boolean. Indicates whether to scale all continuous variables between 0
and 1 (to improve algorithmic convergence, default = TRUE).

Building and training the MIDAS network

The train() function combines the instantiation, building, and training of the MIDAS model
into a single call. It accepts all arguments that can be passed to MIDASpy’s Midas(),
.build_model(), and .train_model() functions (see Section 3.2).16

Generating completed datasets

In addition to producing completed datasets, the complete() function allows users to auto-
matically save these datasets to file. Usage of datatable’s fwrite() function enables users to
quickly write large datasets to CSV files, a significant bottleneck in imputation workflows.

• mid_obj: Object of class ‘midas’. The output from rMIDAS::train().
15Users who are familiar with the syntax of data.table can pass data.tables directly to rMIDAS.
16At present, rMIDAS (version 1.0.0) keeps the following arguments at their default values: train_batch,

output_layers, loss_scale, init_scale, individual_outputs, manual_outputs, output_structure,
weight_decay, act, noise_type, kld_min. We plan to allow manual adjustment of these parameters in future
releases.



16 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

• m: Integer. The number of completed datasets to be produced, i.e., M (default = 5).

• unscale: Boolean. Indicates whether to restore continuous variables that were previ-
ously scaled between 0 and 1 (default = TRUE).

• bin_label: Boolean. Indicates whether to restore binary variable names (default =
TRUE).

• cat_coalesce: Boolean. Indicates whether to decode one-hot encoded categorical vari-
ables (default = TRUE).

• fast: Boolean. For categorical variables, indicates whether to impute the category with
highest predicted probability (TRUE) or to return a weighted sample of categories based
on their predicted probabilities (FALSE; default).

• file: String. Path for saving completed datasets. If NULL, these datasets are stored in
memory.

• file_root: String. If file is specified, the root in file names of saved completed
datasets. If NULL, these datasets will be saved as file/midas_impute_yymmdd_hhmmss_m
.csv.

Multiple imputation analysis

The combine() function runs generalized linear regression models on completed datasets and
pools the results using Rubin’s rules (see Section 3.3).

• formula: Formula or character string. The formula of the regression model to be
estimated.

• df_list: List of names. A list of completed datasets (or objects coercible to data
frames) to be analyzed in the regression model.

• dof_adjust: Boolean. Indicates whether to apply the Barnard and Rubin (1999)
degrees-of-freedom adjustment for small samples (default = TRUE).

• ...: Further arguments passed to glm(), R’s inbuilt function for GLM estimation.

4.3. Summary and comparison

To summarize, rMIDAS and MIDASpy implement the same underlying algorithm but vary in
their front-end programming language and in the specific steps they require users to undertake.
Figure 2 provides a comparison of these steps and their associated functions in rMIDAS and
MIDASpy as well as the multiple imputation packages discussed in Section 1 (and listed in
Table 1).
Both packages include functions for building and training a MIDAS network, generating
completed datasets, and analyzing these datasets using full-data regression methods. In
MIDASpy, however, network initialization, construction, and training are divided into three
separate functions, while in rMIDAS they are merged into one. Accordingly, MIDASpy
permits slightly greater customizability of the MIDAS algorithm than rMIDAS. For instance,



Journal of Statistical Software 17

Amelia

Preprocessing Building and Training Model Completing Data Analysis

rMIDAS

MIDASpy

rMIDAS::convert() rMIDAS::train() rMIDAS::complete() rMIDAS::combine()

Various inbuilt functions MIDAS() .build_model() .train_model() .generate_samples() combine()

mi mi::missing_data.frame()

mice

Norm

MissForest

miceforest MultipleImputedKernel()

sklearn.impute

mi::mi()

.mice() .complete_data()

mice::pool()

norm::prelim.norm() norm::em.norm() norm::mi.inference()

IterativeImputer() .fit() .transform()Other sklearn methods

Amelia::amelia()

mi::change()

mice::mice()

missForest::missForest()

norm::imp.norm()

mi::pool()

mice::with.mids()

Figure 2: Comparison of workflows across multiple imputation software packages.

users of MIDASpy can specify the size of the mini-batches into which the input dataset is
sliced during training to optimize memory allocation, an option not available in rMIDAS.
A second difference between the packages is that rMIDAS contains one function for converting
input data to the specific format accepted by the MIDAS algorithm, whereas MIDASpy
includes separate functions for binary and categorical variables (and no inbuilt function for
the optional step of scaling continuous variables). This difference stems from the availability
both of fast data-shaping functions in R (see Section 4.2) and of a wider range of approaches
to handling and formatting data in Python (e.g., pandas, NumPy, Dask, or a structured
query language strategy). Nonetheless, since none of the required preprocessing steps are
computationally complex, we expect this stage to be relatively fast in both packages.
Most of the R packages reviewed in Section 1 also cover all stages of the standard imputation
workflow. They do not, however, include separate functions for each stage; thus, they offer
less fine-grained control over the workflow than rMIDAS. Each package combines at least
two stages into a single call, and none contains a standalone function for generating com-
pleted datasets. This prevents users from specifying the number of draws from the trained
imputation model and hence from extracting additional completed datasets after training. A
further benefit of the separation between completion and analysis in rMIDAS is that users
can pass output from rMIDAS::complete() to analysis functions in other packages, such as
mi’s mi::pool().
In contrast, none of the Python packages offer complete coverage of the workflow. Tools for
analyzing completed datasets are absent from all three packages, and miceforest also lacks
any preprocessing functionalities.17 As MIDASpy’s combine() function accepts a list of data

17We have identified only one multiple imputation package in Python that contains an analysis function:
autoimpute (Kearney, Barkat, and Bose 2021). However, this function only supports a narrow range of regres-
sion models and requires users to specify this model within the imputation object itself, which is likely to be
incompatible with some workflows. autoimpute is still at an early stage of development, and we were unable
to successfully apply to it to several of our own datasets.



18 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

frames (see Section 3.3), it can be applied to the output from any of these packages. It thus
fills a notable gap in existing multiple imputation software in Python.

5. Illustration with large-scale electoral data
In this section, we demonstrate the software’s core functionalities by using it to impute missing
responses to the 2018 Cooperative Congressional Election Study (CCES), an electoral survey
conducted in the United States whose size and complexity poses computational difficulties for
many existing multiple imputation algorithms.18 We describe the MIDASpy and rMIDAS
workflows in turn.

5.1. MIDASpy demonstration

The full CCES has 525 columns and 60, 000 rows, the latter corresponding to individual sur-
vey respondents. After removing variables that either require extensive preprocessing or are
unhelpful for imputation purposes – open-ended string variables, time indices, and ZIP code
variables – the dataset contains 349 columns. The vast majority of these variables are categor-
ical and must therefore be one-hot encoded for most multiple imputation software packages
– that is, each 1 × 60, 000 categorical variable with K unique classes must be expanded into
a K × 60, 000 matrix of 1s and 0s – increasing their number to 1, 914.

Loading and preprocessing the data
We begin by loading MIDASpy, its dependencies, and additional packages called in the work-
flow. We then read in the formatted CCES data and sort variables into continuous, binary,
and categorical types.

>>> import numpy as np
>>> import pandas as pd
>>> import tensorflow as tf
>>> from sklearn.preprocessing import MinMaxScaler
>>> import sys
>>> import MIDASpy as md
>>> data_in = pd.read_csv("data/cces_jss_format.csv")
>>> cont_vars = ["citylength_1", "numchildren", "birthyr"]
>>> vals = data_in.nunique()
>>> cat_vars = list(
... data_in.columns[(vals.values > 2) & ~(data_in.columns.isin(cont_vars))])
>>> bin_vars = list(data_in.columns[vals.values == 2])

Next, we apply the .binary_conv() function to the list of binary variables (which are not in
dummy form), before appending them and the continuous variables to a constructor_list
object, the basis for our final preprocessed dataset.

18Lall and Robinson (2022) show that MIDASpy imputes missing values in increasingly wide and long samples
of the CCES more efficiently than mi, Amelia, and norm, exhibiting a speed advantage that increases linearly
with length and exponentially with width. These samples were specially constructed and formatted to enable
the latter packages to complete the exercise without crashing. We were not able to successfully apply any of
them to the larger version of the dataset that we analyze in this section.



Journal of Statistical Software 19

>>> data_bin = data_in[bin_vars].apply(md.binary_conv)
>>> constructor_list = [data_in[cont_vars], data_bin]

To one-hot encode categorical variables, we apply the .cat_conv() function to a data frame
containing them. We concatenate the resulting matrix to the existing constructor_list
object.

>>> data_cat = data_in[cat_vars]
>>> data_oh, cat_col_list = md.cat_conv(data_cat)
>>> constructor_list.append(data_oh)
>>> data_0 = pd.concat(constructor_list, axis = 1)

The final preprocessing step, which is nonessential, is to scale all variables between 0 and 1
to aid model convergence. We use scikit-learn’s MinMaxScaler() function for this step.

>>> scaler = MinMaxScaler()
>>> data_scaled = scaler.fit_transform(data_0)
>>> data_scaled = pd.DataFrame(data_scaled, columns = data_0.columns)
>>> na_loc = data_scaled.isnull()
>>> data_scaled[na_loc] = np.nan

Imputation

Once the data are preprocessed, training a MIDAS network with MIDASpy is straightforward.
We declare an instance of the Midas class, pass our data to this object (including the sorted
variable names) with the .build_model() function, and train the network for 10 epochs with
the .train_model() function. For the purposes of this illustration, we maintain most of
MIDASpy’s default hyperparameter settings.

>>> imputer = md.Midas(layer_structure = [256, 256],
... vae_layer = False, seed = 89, input_drop = 0.75)
>>> imputer.build_model(data_scaled,
... binary_columns = bin_vars, softmax_columns = cat_col_list)
>>> imputer.train_model(training_epochs = 10)

Once the model is trained, we draw a list of 10 completed datasets. When datasets are
very large, as in this case, we recommend accessing each one separately rather than simul-
taneously holding all of them in memory. We thus construct a dataset generator using the
.yield_samples() function.

>>> imputations = imputer.yield_samples(m = 10)

From instantiation to completion, the imputation process took 14.7 minutes on a medium-
performance computer.19

19An 8-core AMD 2700X processor with 16GB RAM running Ubuntu 22.04). In our replication materials,
we show that it takes 29.8 minutes on a dual-core 2017 MacBook Pro computer with 8GB RAM.



20 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Analysis of completed datasets

We analyze the 10 completed datasets using MIDASpy’s inbuilt combine() function. We
estimate a simple linear probability model in which "CC18_415a", a respondent’s degree of
support for giving the United States Environmental Protection Agency power to regulate car-
bon dioxide emissions, is regressed on "age" (2018 – "birthyr"), a respondent’s age.20 As we
scaled the input dataset prior to imputation with the MinMaxScaler() function, for each com-
pleted dataset we first invert this transformation via scikit-learn’s .inverse_transform()
function and also convert predicted probabilities for CC18_415a into binary categories using
a threshold of 0.5. To save memory, we append the relevant subset of the data, for analysis,
to a list.

>>> analysis_dfs = []
>>> for df in imputations:
... df_unscaled = scaler.inverse_transform(df)
... df_unscaled = pd.DataFrame(df_unscaled, columns = data_scaled.columns)
... df["age"] = 2018 - df_unscaled["birthyr"]
... df["CC18_415a"] = np.where(df_unscaled["CC18_415a"] >= 0.5, 1, 0)
... analysis_dfs.append(df.loc[:,["age", "CC18_415a"]])
>>> model = md.combine(y_var = "CC18_415a", X_vars = ["age"],
... df_list = analysis_dfs)
>>> model

term estimate std.error statistic df p.value
0 const 0.934493 0.005515 169.459700 3056.421238 0.0
1 age -0.005259 0.000107 -49.160665 4565.125518 0.0

As noted in Section 3.4, users can ensure exact reproducibility of analytical results by saving
completed datasets to disk.21

5.2. rMIDAS demonstration

Loading and preprocessing the data

Similarly to before, we start by loading rMIDAS and reading in the CCES sample.

R> library("rMIDAS")
R> set.seed(89)
R> data_0 <- fread("data/cces_jss_format.csv")

We then preprocess the data into the format required by the MIDAS algorithm using the
rMIDAS::convert() function, which only requires vectors of binary and categorical variables.
We set minmax_scale = TRUE to scale continuous variables between 0 and 1.

20As noted in Section 3.4, users can ensure exact reproducibility of analytical results by saving completed
datasets to disk. The trained MIDAS model itself is also saved by default (in MIDASpy to the location specified
in the savepath argument of Midas(), in rMIDAS to the R session directory).

21The trained MIDAS model itself is also saved by default (in MIDASpy to the location specified in the
savepath argument of Midas(), in rMIDAS to the R session directory).



Journal of Statistical Software 21

R> vals <- apply(data_0, 2, function(x) length(unique(x)[!is.na(unique(x))]))
R> cont_vars <- c("citylength_1", "numchildren", "birthyr")
R> cat_vars <- names(vals)[vals > 2 & !(names(vals) %in% cont_vars)]
R> bin_vars <- names(vals)[vals == 2]
R> data_conv <- convert(data_0, bin_cols = bin_vars, cat_cols = cat_vars,
+ minmax_scale = TRUE)

Imputation

To train the MIDAS network, we pass our preprocessed data to the rMIDAS::train() function
and specify network hyperparameters. Unlike in MIDASpy, we do not need to additionally
declare categorical variables and their classes with the softmax_columns argument.

R> data_train <- train(data_conv, layer_structure = c(256, 256),
+ vae_layer = FALSE, seed = 89, input_drop = 0.75,
+ training_epochs = 10)

We then generate 10 completed datasets using the rMIDAS::complete() function, saving them
in memory. The function returns scaled continuous variables and one-hot encoded categorical
variables to their original form using the parameters saved in the preprocessing step. Unlike
in the MIDASpy demonstration above, by default this function converts imputed probabilities
for binary variables into binary categories by taking draws from a binomial distribution with
P(x = 1) = p. Categorical labels are similarly assigned by taking a weighted random draw
using the vector of predicted probabilities from the imputed data.22. Note this difference
slightly impacts the regression estimates compared to the Python results in the previous
section.

R> imputations <- complete(data_train, m = 10)

Overall, the imputation process took 32.6 minutes on the same medium-performance com-
puter. This is longer than MIDASpy’s runtime because it also includes rescaling and collaps-
ing one-hot encoded categorical variables after imputation (the time taken to interface with
Python is negligible).23

Analysis of completed datasets

We estimate the same linear probability model as in the previous section by means of the
rMIDAS::combine() function.

R> for (d in 1:10) {
+ imputations[[d]]$age <- 2018 - imputations[[d]]$birthyr
+ imputations[[d]]$CC18_415a <- ifelse(imputations[[d]]$CC18_415a == 1,
+ 1, 0)
+ }

22This behavior can be disabled by setting fast = TRUE when calling rMIDAS::complete(), in which case
binary variables are assigned 1 if p ≥ 0.5, and the label with the highest predicted probability is chosen for
categorical variables

23Users could accelerate runtime by not decoding categorical variables (cat_coalesce = FALSE) and instead
including them as dummy variables in subsequent analyses.



22 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

0.00

0.02

0.04

0.06

0 20 40
Prediction for citylength_1

D
en

si
ty

Set of imputations (M)

1 2 3 4 5 6 7 8 9 10

Figure 3: Imputed values of CCES variable "citylength_1" (generated with rMIDAS).

CC18_417_a citylength_1 numchildren

CC18_401 CC18_413d CC18_415a

1.00 1.25 1.50 1.75 2.00 0 25 50 75 100 0 5 10 15

1 2 3 4 5 1 2 3 4 5 1.00 1.25 1.50 1.75 2.00

0

2

4

0.00

0.25

0.50

0.75

0

1

2

0.00

0.01

0.02

0.03

0.04

0.05

0

1

2

3

4

0

1

2

3

4

5

Value

D
en

si
ty

Average MIDAS imputation (M=10) Original value

Figure 4: Density plots of original and imputed values of six CCES variables (based on
rMIDAS output).

R> combine("CC18_415a ~ age", imputations)

## No model family specified -- assuming gaussian model.

## term estimate std.error statistic df p.value
## 1 (Intercept) 0.860882795 0.0059241063 145.31859 457.8736 0.00000e+00
## 2 age -0.004134505 0.0001132612 -36.50416 809.2863 3.26543e-173

rMIDAS output

Figures 3 and 4 illustrate the results of the rMIDAS imputation process. The former plots
the kernel densities of the 10 sets of imputed values of "citylength_1", a continuous variable



Journal of Statistical Software 23

measuring how long a respondent has lived in their current city of residence. The distributions
have an approximately normal shape centered on the same mean, with the small differences
reflecting random variation in the rMIDAS algorithm’s draws from the missing-data posterior
(which, in turn, reflects uncertainty about the correct imputation model).
Figure 4 displays the densities of original and imputed values of six CCES variables, of
which two are categorical ("CC18_401", "CC18_4123"), two are binary ("CC18_415a",
"CC18_417_a"), and two are numeric ("citylength_1", "numchildren"). Imputations are
averaged across completed datasets, with categorical variables rounded to the nearest integer.
Only minor differences between the two distributions are apparent.24

6. Model calibration and validation
MIDASpy and rMIDAS offer a variety of functionalities for calibrating and assessing the
fit of the imputation model. This section describes the three main tools: (1) the technique
of “overimputation”; (2) the adjustment of MIDAS network hyperparameters; and (3) the
inclusion of a variational autoencoder layer in the network.

6.1. Overimputation

Overimputation, which was developed by Honaker et al. (2011) and Blackwell, Honaker, and
King (2017), involves removing random observed values from the dataset, generating multiple
imputations for each value, and checking the accuracy of these imputations.25 This method
is useful both for the evaluating the overall performance of the imputation model and, in par-
ticular, for determining the optimal length of the training process, which is difficult to know
a priori. Initially, additional training epochs should improve the model’s predictive perfor-
mance as it learns more accurate approximations of the missing-data posterior. However,
longer training yields diminishing returns and increases the likelihood of overfitting. Overim-
putation allows users to track model performance over the course of training, helping them
to establish an appropriate point at which to halt this process in the final imputation run.
The overimpute() function in MIDASpy and rMIDAS spikes additional missingness into
the input data and reports imputation accuracy at training intervals specified by the user.
Accuracy is measured as the RMSE of imputed values versus actual values for continuous vari-
ables and classification error for binary and categorical variables (i.e., the fraction of correctly
predicted classes subtracted from 1). Metrics are reported in two forms: (1) their summed
value over all Monte Carlo samples from the estimated missing-data posterior (“aggregated
RMSE”, “aggregated binary error”, and “aggregated softmax error”); and (2) their summed
value divided by the number of such samples (“individual RMSE”, “individual binary error”,
and “individual softmax error”).
In the final model, we recommend selecting the number of training epochs that minimizes
the average value of these metrics – weighted by the proportion (or relative substantive
importance) of continuous and categorical variables – in the overimputation exercise. This

24Perhaps the clearest is that the original distribution of CC18_401, which measures a respondent’s reported
voting behavior in the 2018 Midterm Election, has slightly fewer values of 2 (thought about voting), 3 (usually
votes but not this time) and 4 (attempted to vote) than the imputed distribution.

25It thus has a similar logic to MIDAS itself. The method of imputing the removed values (and the proportion
of such values) are, of course, very different.



24 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

“early stopping” rule reduces the risk of overtraining and thus effectively serves as an extra
layer of regularization in the network.
We favor overimputation over customary train/test split approaches to model calibration and
validation for two reasons. First, the latter have been found to systematically underestimate
error in autoencoders and other unsupervised methods of nonlinear dimensionality reduction
(Christiansen 2005; Scholz 2012). Second, they prevent us from training the imputation model
on the full dataset, which compromises performance (particularly when there are high levels
of missingness).

Arguments
The arguments of overimpute() are similar to those of rMIDAS’s train() function but allow
users to specify the frequency with which loss values are calculated.

• spikein: Float (between 0 and 1). The probability of corruption for observed values in
the input dataset (default = 0.1).

• training_epochs: Integer. The number of overimputation training epochs (default =
100). Selecting a low value increases the risk that trends in the loss metrics have not
stabilized by the end of training, in which case the exercise is less informative.

• plot_vars: Boolean. Specifies whether to plot the distribution of original versus over-
imputed values (default = True). A density plot is generated for continuous variables
and a barplot for categorical variables (showing proportions of each class).

• plot_main: Boolean. Specifies whether to display the main graphical output, a plot
of error trends during overimputation training, at every reporting interval (set by
report_ival) (default = True). If set to False, this output will only appear at the
end of the training process. Error values are still shown at each interval.

• skip_plot: Boolean. Specifies whether to suppress the main graphical output (default
= False). This may be desirable when users are conducting a series of overimputation
exercises and are primarily interested in the console output.

• save_figs: Boolean. Specifies whether to save generated figures instead of displaying
them in the console (default = False in MIDASpy; the argument is always TRUE in
rMIDAS to prevent compatibility issues).

• save_path: String. Indicates path to save overimputation figures (default = the working
directory). Users should include a trailing "/" at the end of the path (i.e., save_path
= "path/to/figures/").

• spike_seed: Integer. The value to which the Python or R pseudo-random number
generator is initialized for the missingness spike-in. This is separate to the seed specified
in the Midas() or rMIDAS::train() call.

• excessive: Boolean. Specifies whether to print aggregate mini-batch loss to the ter-
minal (default = False).26 This allows users to check for unusual imputations, which
may be helpful if loss is not declining during overimputation training.

26The excessive argument in MIDASpy’s .train_model() function, in contrast, prints individual mini-
batch loss.



Journal of Statistical Software 25

Figure 5: Graphical output of the rMIDAS::overimpute() function applied to the CCES.
The reporting interval (x axis) is 25 training epochs. The red crosses indicate the lowest
value of each error metric.

Demonstration

We demonstrate the overimpute() function on the CCES data analyzed in the previous
section, specifying the imputation model in the same way. We set the function to run for 100
training epochs, removing 30% of observed values and reporting error every 25 epochs. In
MIDASpy, we set plot_main = False to generate a single graphical plot at the end of the
run rather than separate plots after each reporting interval.

>>> imputer.overimpute(spikein = 0.3, training_epochs = 100,
... report_ival = 25, plot_vars = False, plot_main = False,
... spike_seed = 89)

In rMIDAS, we save generated figures directly to disk via the save_path argument, which
prevents the R console from waiting for each plot to be manually closed before proceeding.

R> overimpute(data_conv, layer_structure = c(256, 256), vae_layer = FALSE,
+ seed = 89, spikein = 0.3, training_epochs = 100, report_ival = 25,
+ plot_vars = TRUE, spike_seed = 89, save_path = "Figures/")

Figure 5 displays the rMIDAS::overimpute() function’s main graphical output, with red
crosses indicating the lowest value of each error metric. The two RMSE metrics decline over
the first 25 training epochs, after which they increase slightly, which is typically a sign of
overfitting. In such instances, users should cap the number of epochs in the real imputation
process before the start of this increase. The binary error metrics are also relatively stable
over training, though record their minimum values later in the process (at 75 epochs for the
individual metric and 100 epochs for the aggregate metric). In contrast, the classification



26 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Figure 6: Example of the rMIDAS::overimpute() function’s plot_vars output for a contin-
uous variable ("numchildren").

error metrics fall sharply during the first 25 epochs and more slowly thereafter, reaching their
lowest points at the end of the training.
The length of the training process can therefore have uneven effects on MIDAS’s imputation
accuracy for different types of variables, and users will often have make tradeoffs according
to the type of error they wish to minimize. In this particular case, all error metrics are close
to their minimum values after 25 epochs, so users may decide that additional training is not
worth the extra computation time (and risk of overfitting).
In many applications, it is also useful to inspect overimputed values of individual variables
and to compare their distribution to that of the original data. When plot_vars = True,
overimpute() plots these two distributions for each variable at every reporting interval.
Figures 6 and 7 provide an example of this output in rMIDAS for a continuous variable
("numchildren") and a categorical variable with many levels ("industryclass"), respec-
tively. We recommend setting plot_vars = FALSE for very wide datasets to speed up training
and prevent a crowded console.

6.2. Assessing sensitivity to additional hyperparameters

The performance of neural networks can also be sensitive to hyperparameters other than
the number of training epochs, such as the structure of the network, the learning rate, and
activation functions. To assess such sensitivity and optimize model specification, users of
MIDASpy and rMIDAS should ideally compare results under alternative values of a selection
of hyperparameters. The default values discussed in Section 3.2 will often provide an appro-
priate baseline for comparison, though may be far from optimal in some applications. In this
section, we compare the software’s performance across varying values of three of the most
consequential hyperparameters in deep neural networks: network depth, network width, and
the learning rate.



Journal of Statistical Software 27

Figure 7: Example of the rMIDAS::overimpute() function’s plot_vars output for a cate-
gorical variable ("industryclass").

Network depth and breadth

The optimal depth and breadth of a MIDAS network naturally depends on the structure of
the input data. In general, when data have complex characteristics (such as a large number
of dimensions and extreme nonlinearities) the network’s performance will be more sensitive
to depth and width, which are key determinants of its capacity to learn the underlying data
manifold. Other things equal, wider networks are better able to learn complex interactions
between variables, while deeper networks are better able to capture complex nonlinearities.
Importantly, however, networks that are too deep or wide relative to the complexity of the
data are more susceptible to overfitting – in addition to wasting valuable computation time.
To illustrate this point, we vary the number of layers and nodes per layer in the MIDAS
network applied to the CCES in Section 5. We instantiate 12 separate versions of this network
with 2, 3, or 4 hidden layers and 64, 128, 256, or 512 nodes per layer. To gauge performance,
we use the .overimpute() function to spike 30% additional missingness into the dataset and
calculate loss after 100 training epochs.27 In MIDASpy, we save the console output to a text
file, from which we scrape the relevant loss values.

>>> nodes = [64, 128, 256, 512]
>>> layers = [2, 3, 4]
>>> node_layers = []
>>> for n in nodes:
... for l in layers:
... node_layers.append([n] * l)
>>> text_path = "data/hyperparameter_python_output.txt"

27We set skip_plot = True to suppress the function’s main graphical output.



28 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

>>> txt_file = open(text_path, "w")
>>> sys.stdout = txt_file
>>> for nl in node_layers:
... print("Layer structure: ", nl)
... imputer = Midas(layer_structure = nl, vae_layer = False,
... seed= 89, input_drop = 0.75)
... imputer.build_model(data_scaled,
... binary_columns = bin_vars,
... softmax_columns = cat_col_list)
... imputer.overimpute(spikein = 0.3, training_epochs = 101, report_ival = 50,
... spike_seed = 89, plot_vars = False, plot_main = False,
... skip_plot = True)
... print("\n\n")
>>> txt_input = open(text_path, "r")
>>> structures = []
>>> softmax_agg = []
>>> for line in txt_input:
... if "Layer structure" in line:
... structures.append(line[18:len(line) - 1])
... elif "Aggregated error on softmax spike-in" in line:
... softmax_agg.append(line[38:len(line) - 1])
>>> softmax_agg = list(map(float, softmax_agg))
>>> epochs = [0, 50, 100] * len(structures)
>>> structure_list = >>> np.repeat(structures, 3)
>>> layers = list(np.repeat([2, 3, 4], 3)) * 4
>>> nodes = list(np.repeat([64, 128, 256, 512], 9))
>>> data = pd.DataFrame({"structure":structure_list, "layers":layers,
... "nodes":nodes, "epoch": epochs, "softmax_agg": softmax_agg})

In rMIDAS, we extract the loss values from a character vector saved from the R console
output.

R> nodes <- c(64, 128, 256, 512)
R> layers <- c(2, 3, 4)
R> node_layers <- list()
R> for (n in nodes) {
+ for (l in layers) {
+ node_layers[[length(node_layers) + 1]] <- rep(n, l)
+ }
+ }
R> hyper_res <- py_capture_output(
+ for (nl in node_layers) {
+ print("Node structure: ")
+ print(nl)
+ overimpute(data_conv, layer_structure = nl, vae_layer = FALSE,
+ seed = 89, input_drop = 0.75, spikein = 0.3,
+ training_epochs = 100, report_ival = 100, plot_vars = FALSE,



Journal of Statistical Software 29

0.398

0.418

0.435

0.363

0.393

0.404

0.341

0.359

0.377

0.336

0.349

0.366

2

3

4

64 128 256 512
Nodes per layer

N
o.

 o
f h

id
de

n 
la

ye
rs

0.34 0.36 0.38 0.40 0.42

Aggregated error on softmax (categorical)

Figure 8: Aggregated softmax error of 12 MIDAS networks of varying depth and width after
10 epochs of training on the CCES (based on rMIDAS output).

+ skip_plot = TRUE, spike_seed = 89)
+ },
+ type = c("stdout"))
R> hyper_vec <- strsplit(hyper_res, "\n")[[1]]
R> softmax_agg = c()
R> for (line in hyper_vec) {
+ if (grepl("Aggregated error on softmax spike-in", line)) {
+ softmax_agg <- append(softmax_agg, substr(line, 38, nchar(line)))
+ }
+ }
R> hyperp_data <- data.frame(
+ epochs = rep(c(0, 100), length(node_layers)),
+ layers = rep(layers, each = 2),
+ nodes = rep(nodes, each = 2 * length(layers)),
+ softmax_agg = as.numeric(softmax_agg))

Figure 8 reports the aggregate softmax error for the 12 models based on the rMIDAS output
(as noted in Section 5, the preponderance of CCES variables are categorical).28 Error is
minimized with a network comprising two hidden layers of 512 nodes and maximized with a
network comprising four hidden layers of 64 nodes. These results indicate that the kind of
complexity that characterizes the CCES is better captured by wider and shallower networks,
perhaps because it is primarily manifested in interactions between variables rather than in
nonlinearities.

28The aggregated RMSE results are essentially the same.



30 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Thus, users should not assume that increasing the width and depth of the network will always
improve imputation accuracy; the nature of this impact rests on subtle characteristics of the
input data. The sizable differences in error shown in Figure 8 show that assessing sensitivity
to network structure is a simple but effective strategy for improving the fit of the imputation
model as well as for making the most efficient use of computational resources.

Adjusting the learning rate

As noted in Section 3.2, the learning rate determines the scale of the adjustment made to
the MIDAS network’s weights and biases after each training epoch. A higher learning rate
results in larger but less precise updates to these parameters, which reduces overall training
time but tends to increase error by limiting the extent to which the network can “fine-tune”
its parameters. Consequently, there is often a tradeoff between training time and imputation
accuracy when specifying the learning rate.
To illustrate this tradeoff, we train a series of MIDAS networks with learning rates varying
from a minimum of γ = 0.00001 to a maximum of γ = 0.1, holding constant other hyperpa-
rameters at their default settings.
In MIDASpy, we follow a similar strategy to the network structure example, recording the
Python console output to a text file.

>>> learn_rates = [0.00001, 0.0001, 0.001, 0.01, 0.1]
>>> lr_path = "data/learn_rate_results.txt"
>>> lr_txt = open(lr_path, "w")
>>> sys.stdout = lr_txt
>>> for lr in learn_rates:
... imputer = md.Midas(layer_structure = [128, 128], vae_layer = False,
... seed = 89, input_drop = 0.75, learn_rate = lr)
... imputer.build_model(data_scaled, binary_columns = bin_vars,
... softmax_columns = cat_col_list)
... imputer.train_model(training_epochs = 20)

In rMIDAS, we record the R console’s output at each training epoch and scrape the loss value.

R> learn_rates <- c(0.00001, 0.0001, 0.001, 0.01,0.1)
R> lr_out <- py_capture_output(
+ {
+ for (lr in learn_rates) {
+ train(data_conv, layer_structure = c(128,128), vae_layer = FALSE,
+ seed = 89, input_drop = 0.75, training_epochs = 20,
+ learn_rate = lr)
+ }
+ })

Figure 9 plots the rMIDAS training loss for each learning rate in each epoch. The optimal
learning rate (γ = 0.001) is higher than the default setting (γ = 0.0001), though the two
networks perform comparably. The lowest rate (γ = 0.00001) also yields larger (but declining)
loss, as might be expected, given the smaller parameter adjustments it permits. The two



Journal of Statistical Software 31

Figure 9: Training loss of MIDAS networks with different learning rates (based on rMIDAS
output).

highest rates (γ = 0.01 and γ = 0.1) deliver the worst performance and generate erratic loss,
indicating that parameter adjustments are so large that the model is incapable of learning
better approximations of the input data.
In sum, the learning rate can also influence MIDAS’s accuracy and speed in important ways,
and there is no guarantee that its default setting in MIDASpy and rMIDAS will deliver the
best performance. Testing different rates can therefore help users to optimize the software for
their application, particularly where loss values exhibit an irregular or increasing trend during
training (suggesting that a lower rate could improve accuracy) or convergence is very slow
(suggesting that a higher rate could improve speed). As with other tunable hyperparameters,
the optimal setting will depend on the size and structure of the input data.

6.3. Variational autoencoder component

A third diagnostic tool provided by the software is the generation of an alternative set of
imputations using a variational autoencoder component, which changes the process by which
input data are encoded into latent representations. These imputations can then be compared
against the input data and the regular imputations as a form of model validation.
Variational autoencoders encode inputs not to a fixed vector y but to a chosen distribution
over the latent space of the data. The typical choice is a multivariate normal distribution
parameterized by a vector of means µ and corresponding variances Σ. The loss function
minimized during training includes a Kullback-Leibler divergence term (in addition to the
usual reconstruction term) that serves as a regularizer, reducing the risk of an uneven latent
space in which similar data points can become very different after decoding. Decoded samples
from the latent distribution therefore tend to closely approximate the form of the input data,
rendering the method well suited to the task of generative modeling.29

29Variational autoencoders have been used in applications as diverse as generating fake photographic por-
traits and composing purely synthetic music.



32 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

𝐱̃  𝐲 𝐳

𝜇

𝚺

𝐲 ∼  (𝜇, 𝚺)

(a) Denoising autoencoder

(b) Denoising variational autoencoder

Input encoded into vector of means and
variances parameterizing MVN latent space

Input encoded into fixed vector Fixed vector decoded to match size of
input vector

𝐱̃  𝐳

Sampled vector decoded to match size of
input vector

Figure 10: The architecture of a MIDAS network with and without a variational autoencoder
layer.

Figure 10 provides a visual summary of how a standard MIDAS network (panel a) is altered
by the inclusion of a variational autoencoder component (panel b). In both networks, missing
values are set to 0, nodes are stochastically dropped from hidden layers, and the encoder
compresses the corrupted input x̃ through a series of shrinking hidden layers. In the varia-
tional network, however, the bottleneck layer maps the output of the previous layer to a latent
multivariate normal distribution: y ∼ N (µ | Σ). A vector of values is then sampled from
this distribution and decompressed through the decoder. The output z is identical in form to
that of the standard network, and imputations can be drawn from the estimated posterior of
the model.
Imputations produced by the variational MIDAS network are thus based on an alternative –
more stringent but not necessarily less plausible – set of assumptions about the distribution
of the latent space. If these values are similar to both the observed input data and the
standard imputations, therefore, the MIDAS network is likely to have learned a robust latent
representation of such data.

Associated arguments

As documented in Section 3.2, the variational autoencoder component can be activated by
setting vae_layer = True in MIDASpy’s Midas() function and in rMIDAS’s train() func-
tion. This component has separate hyperparameters that are specified in three additional
arguments.



Journal of Statistical Software 33

CC18_417_a citylength_1 numchildren

CC18_401 CC18_413d CC18_415a

1.00 1.25 1.50 1.75 2.00 0 25 50 75 100 0 5 10 15 20

1 2 3 4 5 1 2 3 4 5 1.00 1.25 1.50 1.75 2.00

0

2

4

0.00

0.25

0.50

0.75

0

1

2

0.00

0.01

0.02

0.03

0.04

0.05

0

1

2

3

0

1

2

3

4

5

(Predicted) Value

D
en

si
ty

Model Average MIDAS imputation (M = 10) Original value

Figure 11: Density plots of original values and variational imputed values for six CCES
variables (based on rMIDAS output).

• latent_space_size: Integer. The number of normal dimensions used to parameterize
the latent space (default = 4).

• vae_sample_var: Float. The sampling variance of the normal distributions used to
parameterize the latent space (default = 1).

• vae_alpha: Float. The strength of the prior imposed on the Kullback-Leibler divergence
term in the variational autoencoder loss functions (default = 1).

Demonstration
We demonstrate the variational autoencoder functionality by comparing the results from four
MIDAS networks in which (1) this option is either enabled or disabled and (2) there two layers
of either 128 or 512 nodes. We train each network on a reduced subset of the CCES for 10
epochs and draw 10 sets of imputed values, again rounding categorical variables to integers.30

The MIDASpy code for the variational network with two 512-node layers is as follows.
30We limit the number of variables to prevent memory shortages caused by holding four separate imputation



34 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Figure 12: Imputed values of "citylength_1" generated by a MIDAS network without and
without a variational autoencoder component (based on rMIDAS output).

>>> imputer = Midas(layer_structure = [512, 512], seed = 89,
... input_drop = 0.75, vae_layer = True)
>>> imputer.build_model(data_scaled, softmax_columns = columns_list)
>>> imputer.train_model(training_epochs = 10)

In rMIDAS, only the rMIDAS::train() function is required.

R> train(data_short, layer_structure = c(512, 512), vae_layer = TRUE,
+ seed = 89, input_drop = 0.75, training_epochs = 10)

From rMIDAS’s output, Figure 11 plots the distribution of original values and average im-
puted values produced by the two-layer, 512-node variational network for the six CCES vari-
ables inspected in Section 5. The close alignment between the two densities in each graph
indicates that the variational autoencoder has learned a good approximation of the latent
space. The four-layer, 128-node network yields comparable distributions (not reported). In
line with the results of Section 6.2, however, it performs slightly worse on predictive accuracy
in an overimputation exercise.
Figure 12 compares imputed values of "citylength_1" generated by both versions of the
variational and standard networks. The variational imputations have a very similar distri-
bution to the regular ones, with both exhibiting greater variance in the case of the 512-node
network. As more varied samples generally indicate a better mapping of the latent space, this
constitutes further evidence that a relatively wide but shallow network is most effective at

models – and therefore 40 completed datasets – in memory. The subset contains a mixture of binary, categorical,
and continuous variables. See the replication material for further details.



Journal of Statistical Software 35

capturing the type of complexity expressed by the CCES. Taken together, these comparisons
suggest that the standard MIDAS imputation model is a good fit to the input data, giving
us increased confidence in its output.

7. Concluding remarks
MIDASpy and rMIDAS enable users of Python and R, respectively, to efficiently multiply
impute missing values in datasets of widely varying size and complexity. The packages im-
plement a recently developed approach to multiple imputation – MIDAS – that harnesses the
capacity of deep neutral networks to efficiently learn informative and robust latent represen-
tations of observed data. Leveraging the efficiency of the TensorFlow platform for machine
learning programming, they provide a set of user-friendly and flexible tools for constructing
and calibrating MIDAS imputation models, validating model outputs, and extracting and
analyzing completed datasets.
We intend to continually refine and incorporate additional features into the software to en-
hance its performance. In the near term, we plan to improve the scope of its input pipeline
for massive datasets and to develop a consolidated and efficient preprocessing function for
MIDASpy (similar to that in rMIDAS) to further streamline users’ workflows. Looking fur-
ther ahead, we are exploring the possibility of adding explicit functionalities for handling
temporal dependence, such as recurrent neural network cells and locally weighted smoothing,
implementing categorical embeddings, and of allowing users to incorporate observation- and
cell-level prior information about specific missing values into the imputation model.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean
J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R,
Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster
M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas
F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2016). “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems.” arXiv 1603.04467,
arXiv.org E-Print Archive. doi:10.48550/arxiv.1603.04467.

Barnard J, Rubin DB (1999). “Small-Sample Degrees of Freedom with Multiple Imputation.”
Biometrika, 86(4), 948–955. doi:10.1093/biomet/86.4.948.

Blackwell M, Honaker J, King G (2017). “A Unified Approach to Measurement Error and
Missing Data: Overview and Applications.” Sociological Methods & Research, 46(3), 303–
341. doi:10.1177/0049124115585360.

Christiansen B (2005). “The Shortcomings of Nonlinear Principal Component Analysis in
Identifying Circulation Regimes.” Journal of Climate, 18(22), 4814–4823. doi:10.1175/
jcli3569.1.

Dask Development Team (2016). Dask: Library for Dynamic Task Scheduling. URL https:
//dask.org/.

https://doi.org/10.48550/arxiv.1603.04467
https://doi.org/10.1093/biomet/86.4.948
https://doi.org/10.1177/0049124115585360
https://doi.org/10.1175/jcli3569.1
https://doi.org/10.1175/jcli3569.1
https://dask.org/
https://dask.org/


36 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Dowle M, Srinivasan A (2023). data.table: Extension of ‘data.frame’. R package ver-
sion 1.14.8, URL https://CRAN.R-project.org/package=data.table.

Gal Y, Ghahramani Z (2016). “Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning.” In Proceedings of the 33rd International Conference on
Machine Learning, pp. 1050–1059. ACM.

Glorot X, Bengio Y (2010). “Understanding the Difficulty of Training Deep Feedforward Neu-
ral Networks.” In Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, pp. 249–256. ICAIS.

Goldberg D (1991). “What Every Computer Scientist Should Know about Floating-Point
Arithmetic.” ACM Computing Surveys (CSUR), 23(1), 5–48. doi:10.1145/103162.
103163.

Gorman B (2018). mltools: Machine Learning Tools. R package version 0.3.5, URL https:
//CRAN.R-project.org/package=mltools.

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012). “Improving
Neural Networks by Preventing Co-Adaptation of Feature Detectors.” Neural Networks, 2,
1–18. doi:10.1145/3065386.

Honaker J, King G (2010). “What to Do about Missing Values in Time-Series Cross-Section
Data.” American Journal of Political Science, 54(2), 561–581. doi:10.1111/j.1540-5907.
2010.00447.x.

Honaker J, King G, Blackwell M (2011). “Amelia II: A Program for Missing Data.” Journal
of Statistical Software, 45(7), 1–47. doi:10.18637/jss.v045.i07.

Hunter JD (2007). “matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/mcse.2007.55.

Kearney J, Barkat S, Bose A (2021). autoimpute. Version 0.12.2, URL https://github.
com/kearnz/autoimpute.

Kingma DP, Ba J (2015). “Adam: A Method for Stochastic Optimization.” In 3rd Inter-
national Conference on Learning Representations (ICLR), Conference Track Proceedings.
ICLR.

Lall R (2016). “How Multiple Imputation Makes a Difference.” Political Analysis, 24(4),
414–433. doi:10.1093/pan/mpw020.

Lall R, Robinson T (2022). “The MIDAS Touch: Accurate and Scalable Missing-Data Imputa-
tion with Deep Learning.” Political Analysis, 30(2), 179–196. doi:10.1017/pan.2020.49.

Lall R, Stenlake A, Robinson T (2023). MIDASpy: Multiple Imputation with Denoising
Autoencoders. Python package version 1.3.1, URL https://github.com/MIDASverse/
MIDASpy.

Little RJA, Rubin D (2002). Statistical Analysis with Missing Data. 2nd edition. John Wiley
& Sons. doi:10.1002/9781119013563.

https://CRAN.R-project.org/package=data.table
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://CRAN.R-project.org/package=mltools
https://CRAN.R-project.org/package=mltools
https://doi.org/10.1145/3065386
https://doi.org/10.1111/j.1540-5907.2010.00447.x
https://doi.org/10.1111/j.1540-5907.2010.00447.x
https://doi.org/10.18637/jss.v045.i07
https://doi.org/10.1109/mcse.2007.55
https://github.com/kearnz/autoimpute
https://github.com/kearnz/autoimpute
https://doi.org/10.1093/pan/mpw020
https://doi.org/10.1017/pan.2020.49
https://github.com/MIDASverse/MIDASpy
https://github.com/MIDASverse/MIDASpy
https://doi.org/10.1002/9781119013563


Journal of Statistical Software 37

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S Van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, volume 445,
pp. 51–56. doi:10.25080/Majora-92bf1922-00a.

Oliphant TE (2006). A Guide to NumPy. Trelgol Publishing. URL https://web.mit.edu/
dvp/Public/numpybook.pdf.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12(85), 2825–2830.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robinson T, Lall R, Stenlake A (2023). rMIDAS: Multiple Imputation Using Denoising
Autoencoders. R package version 1.0.0, URL https://CRAN.R-project.org/package=
rMIDAS.

Rubin D (1996). “Multiple Imputation after 18+ Years.” Journal of the American Statistical
Association, 91(434), 473–489. doi:10.1080/01621459.1996.10476908.

Rubin DB (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.
doi:10.1002/9780470316696.

Rumelhart DE, Hinton GE, Williams RJ (1986a). “Learning Internal Representations by Error
Propagation.” In DE Rumelhart, JL McClelland (eds.), Parallel Distributed Processing,
volume 1, pp. 318–362. MIT Press, Cambridge.

Rumelhart DE, Hinton GE, Williams RJ (1986b). “Learning Representations by Back-
Propagating Errors.” Nature, 323(6088), 533–536. doi:10.1038/323533a0.

Schafer JL, Olsen MK (1998). “Multiple Imputation for Multivariate Missing-Data Problems:
A Data Analyst’s Perspective.” Multivariate Behavioral Research, 33(4), 545–571. doi:
10.1207/s15327906mbr3304_5.

Scholz M (2012). “Validation of Nonlinear PCA.” Neural Processing Letters, 36(1), 21–30.
doi:10.1007/s11063-012-9220-6.

Seabold S, Perktold J (2010). “statsmodels: Econometric and Statistical Modeling with
Python.” In S Van der Walt, J Millman (eds.), Proceedings of the 9th Python in Science
Conference, pp. 92–96. doi:10.25080/Majora-92bf1922-011.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014). “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting.” The Journal of Machine
Learning Research, 15(1), 1929–1958.

Stekhoven DJ, Bühlmann P (2012). “MissForest – Non-Parametric Missing Value Imputation
for Mixed-Type Data.” Bioinformatics, 28(1), 112–118. doi:10.1093/bioinformatics/
btr597.

https://doi.org/10.25080/Majora-92bf1922-00a
https://web.mit.edu/dvp/Public/numpybook.pdf
https://web.mit.edu/dvp/Public/numpybook.pdf
https://www.R-project.org/
https://CRAN.R-project.org/package=rMIDAS
https://CRAN.R-project.org/package=rMIDAS
https://doi.org/10.1080/01621459.1996.10476908
https://doi.org/10.1002/9780470316696
https://doi.org/10.1038/323533a0
https://doi.org/10.1207/s15327906mbr3304_5
https://doi.org/10.1207/s15327906mbr3304_5
https://doi.org/10.1007/s11063-012-9220-6
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597


38 MIDASpy and rMIDAS: Efficient Multiple Imputation in Python and R

Su YS, Gelman AE, Hill J, Yajima M (2011). “Multiple Imputation with Diagnostics (mi)
in R: Opening Windows into the Black Box.” Journal of Statistical Software, 45(2), 1–31.
doi:10.18637/jss.v045.i02.

Ushey K, Allaire JJ, Tang Y (2023). reticulate: Interface to Python. R package version 1.28,
URL https://CRAN.R-project.org/package=reticulate.

Van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate Imputation by Chained
Equations in R.” Journal of Statistical Software, 45(3), 1–68. doi:10.18637/jss.v045.
i03.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008). “Extracting and Composing Robust
Features with Denoising Autoencoders.” In Proceedings of the 25th International Conference
on Machine Learning, pp. 1096–1103. ACM.

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010). “Stacked Denois-
ing Autoencoders: Learning Useful Representations in a Deep Network with a Local
Denoising Criterion.” Journal of Machine Learning Research, 11, 3371–3408. doi:
10.1145/1390156.1390294.

Wilson S (2021). miceRanger: Multiple Imputation by Chained Equations with Ran-
dom Forests. R package version 1.5.0, URL https://CRAN.R-project.org/package=
miceRanger.

Wilson S (2022). miceforest: Missing Value Imputation Using LightGBM. doi:10.
5281/zenodo.7428632. Python package version 5.6.3, URL https://pypi.org/project/
miceforest/.

Affiliation:
Ranjit Lall
Department of Politics and International Relations, University of Oxford
Manor Road, Oxford, OX1 3UQ, United Kingdom
E-mail: ranjit.lall@politics.ox.ac.uk
URL: https://ranjitlall.github.io/

Thomas Robinson
Department of Methodology
London School of Economics and Political Science
Columbia House, Aldwych, WC2A 2AE, United Kingdom
E-mail: t.robinson7@lse.ac.uk
URL: https://ts-robinson.com/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

October 2023, Volume 107, Issue 9 Submitted: 2021-02-19
doi:10.18637/jss.v107.i09 Accepted: 2022-12-30

https://doi.org/10.18637/jss.v045.i02
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://www.python.org/
https://www.python.org/
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://CRAN.R-project.org/package=miceRanger
https://CRAN.R-project.org/package=miceRanger
https://doi.org/10.5281/zenodo.7428632
https://doi.org/10.5281/zenodo.7428632
https://pypi.org/project/miceforest/
https://pypi.org/project/miceforest/
mailto:ranjit.lall@politics.ox.ac.uk
https://ranjitlall.github.io/
mailto:t.robinson7@lse.ac.uk
https://ts-robinson.com/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v107.i09

	Introduction
	The MIDAS approach
	Adapting neural networks for multiple imputation
	Algorithm
	Memory management

	Python interface: The MIDASpy package
	Installing MIDASpy
	Main functions and arguments
	Preprocess the input dataset
	Initialize the neural network
	Build the imputation model
	Train the imputation model
	Generate the completed datasets

	Analyze the completed datasets
	Note on replicability

	R interface: The rMIDAS package
	Installation and setup
	Main functions and arguments
	Preprocessing data
	Building and training the MIDAS network
	Generating completed datasets
	Multiple imputation analysis

	Summary and comparison

	Illustration with large-scale electoral data
	MIDASpy demonstration
	Loading and preprocessing the data
	Imputation
	Analysis of completed datasets

	rMIDAS demonstration
	Loading and preprocessing the data
	Imputation
	Analysis of completed datasets
	rMIDAS output


	Model calibration and validation
	Overimputation
	Arguments
	Demonstration

	Assessing sensitivity to additional hyperparameters
	Network depth and breadth
	Adjusting the learning rate

	Variational autoencoder component
	Associated arguments
	Demonstration


	Concluding remarks

